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THIS PAPER is a continuation of the study of various laws of positional control of large dynamic systems [l-3], 
and deals with a holonomic controlled system near its position of equilibrium. The necessary and sufficient 
conditions for the existence of a control ensuring asymptotic stability of the system as a whole are obtained. A 
structure of the control, which is the simplest in a certain sense, which solves the problem in question, is given. 

Let M, C, P, G be the matrices of mass, dissipative forces, potential energy and control, respectively, q the 
vector of generalized coordinates, and u the control. C and P are non-negative definite matrices, and M is a 
positive definite matrix. The motion of a holonomic system near the position of equilibrium is described by the 
equations [4] 

Mq” + Cq’ + Pq = Gu, q E Rn, u E Rm (1) 

Linear controlled systems of general type were studied in sufficient detail in [4, 51, and corresponding 
methods for obtaining a control for solving two-point boundary value problem were developed. If the system is 
of large dimensions the construction of positional control taking the system to a prescribed position is difficult. 
Therefore, regulators are often used which ensure the asymptotic stability of the dynamic system in the 
required position [5]. Suppose the system in question is of large dimensions, and it is required to construct a 
regulator which depends on the minimum number of generalized coordinates. Below we obtain the necessary 
and sufficient conditions determining the control matrix of such a regulator and the corresponding control is 
given. 

We shall call the subspace L on which the non-negative definite form vanishes, the null subspace. We will 
denote by Li and L2 the null subspaces of quadratic forms qTCq and qTPq (1) respectively. 
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Theorem. Let us assume that L2 C L1 and dim L2 = p, and let the system of equations 

k2Mt + PE = 0 and CE = 0 (2) 

have no trivial general solutions for all h#O, including complex values. Then the following relation will 
represent the necessary and sufficient condition for the existence of a control ensuring the asymptotic stability 
as a whole: 

rank 11 El, E2, . . ., EP llTG = p (3) 

where 5’ (i = 1, . . , p) is an arbitrary set of linearly independent vectors forming the basis of the subspace L2 in 
R”. 

Proof. Using the non-singular transformation q = Sx, we can reduce system (1) to normal coordinates 

Xi” = (STGu)i, i = 1,. .( p (4) 

Xi” + i (PCS).. i = p $ 1, . . ., n, (5) 
i=p+l 

2, xi’ + oi2zi = (STGu)i ai2 = (STPS)i, 

By virtue of the assumption that L2 C L1, Eqs (4) contain no elements of the matrices C and P. Let us denote 
by So the submatrix of the matrix S, formed by its first p columns. It follows from (4) that the necessary and 
sufficient condition for complete controllability of the system (4) is that the following relation holds: 

rank SoTG = p (6) 

Let So’, So’, . . , S&’ be the vectors forming the columns of the matrix So. The set of all linearly independent 
vectors forming the basis of L2 and R”, is given by the relation 

11 :‘, ;?, ., 2” If- R jl So’, S,?, . ., So1’ JjT 

where R is an arbitrary, non-degenerate matrix of dimensions p Xp. Therefore relations (6) and (3) are 
equivalent. 

If relation (3) is violated, then there is no control ensuring the asymptotic stability of system (4), and hence of 
the whole system (4), (5). Let relation (3) hold. We will denote by y the vector (xi, . . , xp, xl’, . . . , x~‘)~ and 
assume that the control u 0,) ensuring the asymptotic stability of system (4) has the following properties: 

u (y (t)) - 0 as t-%2 (7) 

where y (t) is the solution of system (4) corresponding to the control u(J), and for any bounded region D of the 
phase space y E R2p there exists a constant C, depending on the region and such, that 

1 IL (y) 1 < C, when y E D (8) 

Let us substitute the control u(y) into system (5), (5). We shall show that the control ensures the asymptotic 
stability of the complete system as a whole. System (4) is asymptotically stable by virtue of the choice of u(y). 
We shall show that system (5) is also asymptotically stable. 

Let 2 = (xP+i, . . . , x,, x~+~*, , x,*)~ and let A be the matrix of phase coordinates of the system (5), 
reduced to normal form. 

We shall show that all eigenvalues kk of the matrix A satisfy the condition 

Be ill, < 0 (9) 

We shall seek the solution of the homogeneous system (4), (5) in the form x = qe”‘, where n is a vector. 
Substituting this expression into the homogeneous system (4), (5) and dividing by e*‘, we obtain 

a21 + asrcsn t- STPS Tj = 0 (10) 

A non-trivial solution of this system exists provided that A satisfies the equation 

det @*E + ?JTCS + STPS) = 0 
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From Eqs (10) and the assumption that L2C L1 it follows that p eigen vectors Sqi of the operator P 
correspond to 2p zero roots hi = 0. The vectors form the basis of the subspace L2 in R”, and the first p 
equations of system (4), (5) correspond to zero values of Ai. 

Let Xk# 0 and -qk be the corresponding eigen vector satisfying system (10). We multiply qk* from the left by 
the vector (10) and introduce the notation 

a, = rl*rl, a2 = q*STCSq, a3 = q*STPSq 

We obtain Ak = (a2 + (u2* - 4ai~~)~‘*)l(2a~). By virtue of the condition Ak#O we have SQ~? L2 and ai >O, 
u3>0. Therefore the necessary and sufficient condition for the inequality ReAk<O to hold is that condition 
u2>0 holds. The equality a2 = 0 is possible if and only if the eigen vectors satisfying Eq. (10) make the 
quadratic form q*STCSq equal to zero. This however contradicts condition (2) of the theorem. Theorem u2 >O 
and Re Ak c 0, which it was required to prove. 

Any solution of Eq. (5) written in normal form, with control u(j) is 

z (t) = exp (At) z” + I (t) (11) 

I(l)=~exp(A(t-r))l(r)dr (z” = z (0)) 

where f(t) is the corresponding inhomogeneous part obtained when u (j (t)) is substituted into the right-hand 
side of (5). 

In relation (11) the first term tends to zero as t increases by virtue of condition (9). In order to estimate the 
second term we use the inequality 

II exp (A4 II B C exp (4, t > 0 

wherea.= e+maxkReAk<O, e>O, k= 1,. . ., 2(n-p), C=const. 
We shall show that the second term on the right-hand side of relation 

estimate (12) we have 

(12) 

(11) also tends to zero. According to 

II(t) I < C 1 exp (a (t - 4) If (~1 I dt 
0 

Let us write the integral on the right-hand side in the form of a sum 
T t 

exp(a(t--V)S exp(a(T--))If(~)Id~+ ~exp(a(t--t))If(@Id~ 
0 T 

We shall choose T such, that when T> T the inequality if(~) ) ~6 holds and use property (8) of the control 
uCy(t)). The previous relation is not greater than 

a+ [Co 11 STG II exp (at) (1 - exp (--aT)) + 6 (exp (a (t - T)) - I)] 

The first term within the square brackets tends to zero as t increases by virtue of the fact that a<O. The 
second term can also be made as small as desired when 6 is sufficiently small. Therefore the limit of the 
right-hand side of relation (11) is zero as t-+ 00, which it was required to prove. 

Note. Condition (2) of the theorem is satisfied in advance when L1 = L2. In this case there exists a control 
ensuring the asymptotic stability of system (1) for any matrix C corresponding to this equality. Suppose now 
that the matrix C is such that condition L, = L2 is violated and we have the inclusion L1 C L2. In this case the 
law of control will depend, generally speaking, on the dissipative forces. 

Consider, as an example, the system 

51 .. = u - Y (0,99x1’ + +‘) 

X2” = -O,lz, - 0,31,’ - IOU - v (51’ + I&,‘) 
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When u = 0, the relation L1 = L2 holds and the control u = -x1 - 0.01 x1 will ensure the asymptotic stability 
of the system. When u = 1, we have L1 C L2 and the control will render the system unstable. This can be 
confirmed by considering the corresponding characteristic polynomial. Therefore the law of control ensuring 
the asymptotic stability of a mechanical system in a vacuum will not necessarily guarantee it in a viscous 
medium. 

1. 

2. 

3. 

4. 
5. 

REFERENCES 

SOKOLOV B. N., Bounds on the control in the linear dynamic optimization problem with a quadratic functional. P&l. 
Mat. Mekh. 54, 4, 1990. 
SOKOLOV B. N., The minimum dimensions of the control vectorin the linear dynamic problem of stabilization. Prikl. 

Mat. Mekh. 54, 5, 1990. 
SOKOLOV B. N., Stabilization of dynamic systems with geometrically constrained control. Prikl. Mat. Mekh. 55, 1, 
1991. 
KRASOVSKII N. N., Theory ofthe Control ofMotion. Nauka, Moscow, 1968. 
BRYSON A. E. Jr. and YU-CHI HO, Applied Optimal Control, Optimization, Estimation and Control. Hemisphere, 
Washington, DC, 1975. 

Translated by L.K. 

J. Appl. Maths Mechs Vol. 55, No. 5, pp. 743-746,199l 
Printed in Great Britain. 

0021-8928/91$15.00+.00 
0 1992 Pergamon Press Ltd 

THE EQUILIBRIUM OF A PARABOLIC-LOGARITHMIC 
SHELL OF REVOLUTION_F 

G. I. NAZAROV and A. A. PUCHKOV 

Kiev 

(Received 20 November 1990) 

An exact general analytic solution is constructed for static membrane equations of equilibrium, in a 

complex form, for a parabolic-logarithmic shell of revolution with variable external load. 

1. BASIC FORMULAS 

STATIC momentless (mean brake) equilibrium of the middle surface of an elastic shell of revolution is 
described, in geographic coordinates z, 0, by the following system of partial differential equations: 

(1.1) 

-- 
t2T2 - rr”T, + rt’Z = 0 (t = 1/l + r’2) 
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